Search results for "D1-like receptor"

showing 2 items of 2 documents

Dopamine induces inhibitory effects on the circular muscle contractility of mouse distal colon via D1- and D2-like receptors

2016

Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benz…

0301 basic medicineAgonistmedicine.medical_specialtyMousePhysiologymedicine.drug_classDopamineBiologyCholinergic neurotransmissionSettore BIO/09 - FisiologiaBiochemistry03 medical and health sciences0302 clinical medicineInternal medicineMuscarinic acetylcholine receptormedicineAdrenergic antagonistReceptorDopaminergicPurinergic receptorIntestinal contractilityGeneral MedicineReceptor antagonistD1-like receptorD2-like receptor030104 developmental biologyEndocrinology030217 neurology & neurosurgeryAcetylcholinemedicine.drugJournal of Physiology and Biochemistry
researchProduct

Neurotransmitter receptor density changes in Pitx3ak mice – A model relevant to Parkinson’s disease

2014

Abstract Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by alterations of nigrostriatal dopaminergic neurotransmission. Compared to the wealth of data on the impairment of the dopamine system, relatively limited evidence is available concerning the role of major non-dopaminergic neurotransmitter systems in PD. Therefore, we comprehensively investigated the density and distribution of neurotransmitter receptors for glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine in brains of homozygous aphakia mice being characterized by mutations affecting the Pitx3 gene. This genetic model exhibits crucial hallmarks of PD on the ne…

MaleSerotoninmedicine.medical_specialtyAdenosineEpinephrineDopamineMice TransgenicD1-like receptorKainate receptorBiologySerotonergicParkinsonian DisordersNeurotransmitter receptorInternal medicinemedicineAnimalsReceptorgamma-Aminobutyric Acid5-HT receptorHomeodomain ProteinsGeneral NeuroscienceHomozygoteGlutamate receptorBrainAcetylcholineReceptors NeurotransmitterMice Inbred C57BLEndocrinology5-HT6 receptorNeuroscienceTranscription FactorsNeuroscience
researchProduct